Manajemen Layanan Konseling Adaptif Deep Learning, dengan Pendekatan Cognitive Behavioral Therapy

Authors

  • Fitri Uswatun Khasanah Universitas Sarjanawiata Tamansiswa,Indonesia
  • Jumintono Jumintono 3Universitas Sarjanawiata Tamansiswa,Indonesia
  • Rahmat Mulyono Universitas Sarjanawiata Tamansiswa,Indonesia

DOI:

https://doi.org/10.56013/jcbkp.v8i2.4183

Keywords:

artificial intelligence; cognitive behavioral therapy; deep learning

Abstract

The imbalance between cognitive and affective aspects in the formal education system in Indonesia indicates the need for a more adaptive and integrative counselling service approach. This research aims to develop an educational counselling service management model that integrates the cognitive behavioural therapy approach with the deep learning approach as a solution to the problem. Using a literature review method of recent literature (2023-2024), this article identifies the main contributions of deep learning in learning, particularly in terms of learning personalisation, emotional detection, and data-driven psychological intervention. The findings show that the integration of deep learning and cognitive behavioural therapy enables the development of a counselling model that is able to detect learners' psychological needs in real-time and provide appropriate interventions automatically. The results are expected to strengthen the psychosocial support system in the educational environment, improve learners' well-being, and encourage the creation of a holistic and sustainable learning environment. This research provides a conceptual contribution to the development of deep learning adaptive education policies that are more responsive to the needs of students as a whole.

References

Alnasyan, B., Basheri, M., & Alassafi, M. (2024). The power of Deep Learning techniques for predicting student performance in Virtual Learning Environments: A systematic literature review. Computers and Education: Artificial Intelligence, 100231.

Beck, J. S. (2012). Cognitive Behavior Therapy: Basics and Beyond.

Booth, A., Martyn-St James, M., Clowes, M., & Sutton, A. (2021). Systematic approaches to a successful literature review.

Briede, L., Samuilik, I., & Drelinga, E. (2024). Teachers’ perspectives on the education process: Identifying challenges and promoting sustainable solutions. Journal of Teacher Education for Sustainability, 26(1), 155–167.

Chapman, J. D., & Aspin, D. N. (2013). A problem-solving approach to addressing current global challenges in education. British Journal of Educational Studies, 61(1), 49–62.

Chung, K., & Lee, D. (2022). COCOA: CBT-based Conversational Counseling Agent using Memory Specialized in Cognitive Distortions and Dynamic Prompt.

Corey, G. (2023). Theory & practice of group counseling. Cengage Boston.

e Silva, L. C., Sobrinho, Á. A. de C. C., Cordeiro, T. D., Melo, R. F., Bittencourt, I. I., Marques, L. B., da Cunha Matos, D. D. M., da Silva, A. P., & Isotani, S. (2023). Applications of convolutional neural networks in education: A systematic literature review. Expert Systems with Applications, 231, 120621.

Fadiyah, P. N., & Masnida. (2025). Teknik CBT: Self Regulated Learning Pada Siswa Broken Home. Jurnal Consulenza:Jurnal Bimbingan Konseling Dan Psikologi, 8(1), 66–78.

Fatmawati, R., Mutakin, F., & Karamoy, Y. K. (2022). Meningkatkan Motivasi Belajar Siswi Melalui Teknik Konseling Cognitive Behavioral Therapy. Jurnal Consulenza: Jurnal Bimbingan Konseling Dan Psikologi, 1(2), 58–62. http://ejurnal.uij.ac.id/index.php/CONS

Ferary, D. (2023). A Philosophical Perspective on the Purpose of Education in Indonesia. In Comparative and Decolonial Studies in Philosophy of Education (pp. 51–71). Springer.

Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Mental Health, 4(2), e7785.

Gligorea, I., Cioca, M., Oancea, R., Gorski, A. T., Gorski, H., & Tudorache, P. (2023). Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review. Education Sciences, 13(12). https://doi.org/10.3390/educsci13121216

Hofmann, S. G., Asnaani, A., Vonk, I. J. J., Sawyer, A. T., & Fang, A. (2012). The efficacy of cognitive behavioral therapy: A review of meta-analyses. Cognitive Therapy and Research, 36, 427–440.

Holdsworth, J., & Scapicchio, M. (2024). What is deep learning? Ibm.Com. https://www.ibm.com/think/topics/deep-learning

Iksal, Hayani, R. A., & Aslan. (2024). Strengthening character education as a response to the challenges of the times. 4(3), 761–774.

Jesson, J., Matheson, L., & Lacey, F. M. (2011). Doing your literature review: Traditional and systematic techniques. Sage.

Jiang, M., Yu, Y. J., Zhao, Q., Li, J., Song, C., Qi, H., Zhai, W., & Luo, D. (2024). AI-Enhanced Cognitive Behavioral Therapy : Deep Learning and Large Language Models for Extracting Cognitive Pathways from Social Media Texts. ArXiv Preprint, 2404.11449, 1–10.

Jiang, M., Zhao, Q., Li, J., Wang, F., He, T., Cheng, X., Yang, B. X., Ho, G. W. K., & Fu, G. (2024). A Generic Review of Integrating Artificial Intelligence in Cognitive Behavioral Therapy. ArXiv Preprint, 2407.19422, 1–48.

Kazantzis, N., Whittington, C., & Dattilio, F. (2010). Meta-analysis of homework effects in cognitive and behavioral therapy: A replication and extension. Clinical Psychology: Science and Practice, 17(2), 144.

Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications.

Lubis, M., & Ariansyah, F. (2024). The Use of Deep Learning to Improve Teaching and Learning in Islamic Schools. 170–193.

Madhakomala, R., Hakim, M. A., & Syifauzzuhrah, N. (2022). Problems of Education in Indonesia and Alternative Solutions. International Journal of Business, Law, and Education, 3(3), 135–144. https://doi.org/10.56442/ijble.v3i3.64

Mohamed, K., & Nadia, K. (2024). Adapting to the Transformation of Education: New Challenges for Teachers. Journal of Languages and Translation, 4(1), 80–88.

Moradimokhles, H., Hwang, G. J., Zangeneh, H., Pourjamshidi, M., & Amooeirazani, A. H. (2024). Study of Deep Learning in Medical Education: Opportunities, Achievements and Future Challenges. Journal of Advances in Medical Education and Professionalism, 12(3), 148–162. https://doi.org/10.30476/jamp.2024.99740.1853

Musnandar, A., & Salim, S. (2024). Review of the national examination policy in the learning evaluation paradigm and its implications for madrasah students. Journal of Noesantara Islamic Studies, 1(2), 94–112.

Na, H. (2023). CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. ArXiv Preprint, 2403.16008.

Naseer, F., Khan, M. N., Tahir, M., Addas, A., & Aejaz, S. M. H. (2024). Integrating deep learning techniques for personalized learning pathways in higher education. Heliyon, 10(11), e32628. https://doi.org/10.1016/j.heliyon.2024.e32628

Ninghardjanti, P., Murtini, W., Hindrayani, A., & Sangka, K. B. (2023). Evaluation of the Smart Indonesia Program as a Policy to Improve Equality in Education. Sustainability (Switzerland), 15(6). https://doi.org/10.3390/su15065114

Pinto, A. S., Abreu, A., Costa, E., & Paiva, J. (2023). How Machine Learning (ML) is Transforming Higher Education: A Systematic Literature Review. Journal of Information Systems Engineering and Management, 8(2). https://doi.org/10.55267/iadt.07.13227

Prasad, N., Chien, I., Regan, T., Enrique, A., Palacios, J., Keegan, D., Munir, U., Tanno, R., Richardson, H., Nori, A., Richards, D., Doherty, G., Belgrave, D., & Thieme, A. (2023). Deep learning for the prediction of clinical outcomes in internet-delivered CBT for depression and anxiety. PLoS ONE, 18(11 November), 1–20. https://doi.org/10.1371/journal.pone.0272685

Ryding, S., & Zoppi, L. (2018). Artificial Intelligence and Deep Learning in Medicine. Www.News-Medical.Net.https://www.news-medical.net/health/Artificial-Intelligence-and-Deep-Learning-in-Medicine.aspx

Sanusi, I. T., Oyelere, S. S., Vartiainen, H., Suhonen, J., & Tukiainen, M. (2023). A systematic review of teaching and learning machine learning in K-12 education. In Education and Information Technologies (Vol. 28, Issue 5). Springer US. https://doi.org/10.1007/s10639-022-11416-7

Shatte, A. B. R., Hutchinson, D. M., & Teague, S. J. (2019). Machine learning in mental health: a scoping review of methods and applications. Psychological Medicine, 49(9), 1426–1448.

Suwandi, Putri, R., & Sulastri. (2024). Inovasi Pendidikan dengan Menggunakan Model Deep Learning di Indonesia. 2(2), 69–77.

Widayanti, L., Hasanah, M., Hadi, A., Sundafa, A., Jember, U. I., & Info, A. (2025). Teknik Cognitive Behavior Therapy Untuk Mengetahui Kecemasan Pada Siswa. Jurnal Consulenza:Jurnal Bimbingan Konseling Dan Psikologi, 8(1), 91–99. https://doi.org/10.56013/jcbkp.v8i1.3034

Wright, J. H., Owen, J. J., Richards, D., Eells, T. D., Richardson, T., Brown, G. K., Barrett, M., Rasku, M. A., Polser, G., & Thase, M. E. (2019). Computer-assisted cognitive-behavior therapy for depression: a systematic review and meta-analysis. The Journal of Clinical Psychiatry, 80(2), 3573.

Yu, W. M. and Z. (2023). A Systematic Review of Critical Success Factors in Blended Learning.

Downloads

Published

2025-09-30

How to Cite

Khasanah, F. U., Jumintono, J., & Mulyono, R. (2025). Manajemen Layanan Konseling Adaptif Deep Learning, dengan Pendekatan Cognitive Behavioral Therapy. Jurnal Consulenza : Jurnal Bimbingan Konseling Dan Psikologi, 8(2), 240–255. https://doi.org/10.56013/jcbkp.v8i2.4183