Review: Potensi Dampak Polycyclic Aromatic Hydrocarbons (PAH) dari Asap Kebakaran Hutan Gambut terhadap Penyakit Paru di Kalimantan Tengah

Authors

  • Nira Meirita Wijayanti Universitas Muhammadiyah Palangkaraya, Indonesia
  • Sri Suhartati Universitas Muhammadiyah Palangka Raya, Indonesia
  • Noor Fadillah Universitas Muhammadiyah Palangka Raya, Indonesia

DOI:

https://doi.org/10.56013/bio.v15i1.5427

Keywords:

Kebakaran Hutan Gambut, Partikulat halus (PM₂.₅), Polycyclic Aromatic Hydrocarbons (PAH), Penyakit paru, Kesehatan Lingkungan

Abstract

Kajian ini bertujuan untuk mensintesis bukti ilmiah mengenai karakteristik emisi PAH dari kebakaran gambut serta implikasinya terhadap kesehatan paru. Penelitian dilakukan menggunakan pendekatan systematic review terhadap literatur terindeks pada PubMed/PMC, Scopus, Web of Science, dan Google Scholar dalam rentang 2010–2025. Hasil kajian menunjukkan bahwa pembakaran gambut pada fase smouldering menghasilkan dominasi PAH berat yang bersifat persisten, karsinogenik, dan cenderung terikat pada fraksi partikulat halus PM₂.₅ dan PM₁. Keterikatan ini meningkatkan stabilitas atmosferik, potensi transport jarak jauh, serta risiko paparan inhalasi hingga ke bronkiolus dan alveoli paru. Secara biologis, paparan PAH melalui inhalasi memicu stres oksidatif dan inflamasi kronis melalui aktivasi Aryl hydrocarbon Receptor (AhR) serta penurunan aktivitas enzim antioksidan, yang berkontribusi terhadap kerusakan epitel saluran napas, remodeling jaringan paru, dan peningkatan risiko asma, PPOK, serta kanker paru. Meskipun bukti epidemiologis spesifik di Kalimantan Tengah masih terbatas, sintesis literatur menunjukkan tingginya kerentanan kesehatan masyarakat terhadap paparan asap kebakaran gambut.

References

Bandowe, B. A. M., & Meusel, H. (2017). Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment – A review. Science of The Total Environment, 581–582, 237–257. https://doi.org/10.1016/j.scitotenv.2016.12.115

Black, R. R., Aurell, J., Holder, A., George, I. J., Gullett, B. K., Hays, M. D., Geron, C. D., & Tabor, D. (2016). Characterization of gas and particle emissions from laboratory burns of peat. Atmospheric Environment, 132, 49–57. https://doi.org/10.1016/j.atmosenv.2016.02.024

BNPB, P. (2019). Badan Nasional Penanggulangan Bencana. BNPB. https://bnpb.go.id/berita/kerugian-kebakaran-hutan-dan-lahan-sepanjang-2019-capai-rp-75-triliun

Chaisongkaew, P., Dejchanchaiwong, R., Inerb, M., Mahasakpan, N., Nim, N., Samae, H., Intra, P., Morris, J., Ingviya, T., Limna, T., & Tekasakul, P. (2023). PM2.5 and chemical compositions in a naturally clean background air of Thailand’s deep south, impact of transboundary haze from peatland fires and source apportionment by Principal Component Analysis. In Review. https://doi.org/10.21203/rs.3.rs-2528684/v1

Chen, C. C., Wang, Y. R., Yeh, H. Y., Lin, T. H., Huang, C. S., & Wu, C. F. (2021). Estimating monthly PM2.5 concentrations from satellite remote sensing data, meteorological variables, and land use data using ensemble statistical modeling and a random forest approach. Environmental Pollution, 291, 118159. https://doi.org/10.1016/J.ENVPOL.2021.118159

Cheruiyot, N. K., Lee, W.-J., Mwangi, J. K., Wang, L.-C., Lin, N.-H., Lin, Y.-C., Cao, J., Zhang, R., & Chang-Chien, G.-P. (2015). An Overview: Polycyclic Aromatic Hydrocarbon Emissions from the Stationary and Mobile Sources and in the Ambient Air. Aerosol and Air Quality Research, 15(7), 2730–2762. https://doi.org/10.4209/aaqr.2015.11.0627

Chiba, T., Chihara, J., & Furue, M. (2012). Role of the Arylhydrocarbon Receptor (AhR) in the Pathology of Asthma and COPD. Journal of Allergy, 2012, 1–8. https://doi.org/10.1155/2012/372384

Chimjarn, S., Delhomme, O., & Millet, M. (2021). Temporal Distribution and Gas/Particle Partitioning of Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Strasbourg, France. Atmosphere, 12(3), 337. https://doi.org/10.3390/atmos12030337

Crippa, P., Castruccio, S., Archer-Nicholls, S., Lebron, G. B., Kuwata, M., Thota, A., Sumin, S., Butt, E., Wiedinmyer, C., & Spracklen, D. V. (2016). Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Scientific Reports, 6(1), 37074. https://doi.org/10.1038/srep37074

Das, D. N., & Ravi, N. (2022). Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. Environmental Research, 213, 113677. https://doi.org/10.1016/j.envres.2022.113677

Department of Cancer Prevention and Environment, L. B. C. (2022). Hydrocarbures aromatiques polycycliques et effets sur la santé • Cancer Environnement. Cancer Environnement. https://www.cancer-environnement.fr/fiches/expositions-environnementales/hydrocarbures-aromatiques-polycycliques-hap/

Febriyana, W. (2021, July 23). Luas Kebakaran Hutan dan Lahan Kalteng Capai 369,92 ha. mmckalteng. https://mmc.kalteng.go.id/berita/read/35148/luas-kebakaran-hutan-dan-lahan-kalteng-capai-369-92-ha

Fujii, Y., Tohno, S., Amil, N., & Latif, M. T. (2017). Quantitative assessment of source contributions to PM2.5 on the west coast of Peninsular Malaysia to determine the burden of Indonesian peatland fire. Atmospheric Environment, 171, 111–117. https://doi.org/10.1016/j.atmosenv.2017.10.009

George, I. J., Black, R. R., Geron, C. D., Aurell, J., Hays, M. D., Preston, W. T., & Gullett, B. K. (2016). Volatile and semivolatile organic compounds in laboratory peat fire emissions. Atmospheric Environment, 132, 163–170. https://doi.org/10.1016/j.atmosenv.2016.02.025

Gupta, R., Mansuri, M., Anand, P. K., Yadav, S., & Perumal, S. (2025). Polycyclic Aromatic Hydrocarbons and Respiratory Toxicity: A Review. International Journal of Current Science Research and Review, 08(04). https://doi.org/10.47191/ijcsrr/V8-i4-23

Harzing, A.-W. (2016, February 6). Publish or Perish. Harzing.Com. https://harzing.com/resources/publish-or-perish

Hasan, N. Y. (2020). Senyawa Toksik Pencemar Udara: Polycyclic Aromatic Hydrocarbons (PAHs). Jurnal Reka Lingkungan, 8(2), 67–77. https://doi.org/10.26760/rekalingkungan.v8i2.67-77

Hatch, L. E., Luo, W., Pankow, J. F., Yokelson, R. J., Stockwell, C. E., & Barsanti, K. C. (2015). Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry. Atmospheric Chemistry and Physics, 15(4), 1865–1899. https://doi.org/10.5194/acp-15-1865-2015

Hayasaka, H., Usup, A., & Naito, D. (2020). New Approach Evaluating Peatland Fires in Indonesian Factors. Remote Sensing, 12(12), 2055. https://doi.org/10.3390/rs12122055

Holme, J. A., Vondráček, J., Machala, M., Lagadic-Gossmann, D., Vogel, C. F. A., Le Ferrec, E., Sparfel, L., & Øvrevik, J. (2023). Lung cancer associated with combustion particles and fine particulate matter (PM2.5)—The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochemical Pharmacology, 216, 115801. https://doi.org/10.1016/j.bcp.2023.115801

Hu, Y., Fernandez-Anez, N., Smith, T. E. L., & Rein, G. (2018). Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire, 27(5), 293–312. https://doi.org/10.1071/WF17084

Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., & Van Weele, M. (2016). Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Scientific Reports, 6(1), 26886. https://doi.org/10.1038/srep26886

Jayarathne, T., Stockwell, C. E., Gilbert, A. A., Daugherty, K., Cochrane, M. A., Ryan, K. C., Putra, E. I., Saharjo, B. H., Nurhayati, A. D., Albar, I., Yokelson, R. J., & Stone, E. A. (2018). Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 18(4), 2585–2600. https://doi.org/10.5194/acp-18-2585-2018

Keyte, I. J., Harrison, R. M., & Lammel, G. (2013). Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons – a review. Chemical Society Reviews, 42(24), 9333. https://doi.org/10.1039/c3cs60147a

Kiely, L., Spracklen, D. V., Wiedinmyer, C., Conibear, L., Reddington, C. L., Arnold, S. R., Knote, C., Khan, M. F., Latif, M. T., Syaufina, L., & Adrianto, H. A. (2020). Air quality and health impacts of vegetation and peat fires in Equatorial Asia during 2004–2015. Environmental Research Letters, 15(9), 094054. https://doi.org/10.1088/1748-9326/ab9a6c

Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. C. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019

Koss, A. R., Sekimoto, K., Gilman, J. B., Selimovic, V., Coggon, M. M., Zarzana, K. J., Yuan, B., Lerner, B. M., Brown, S. S., Jimenez, J. L., Krechmer, J., Roberts, J. M., Warneke, C., Yokelson, R. J., & De Gouw, J. (2018). Non-methane organic gas emissions from biomass burning: Identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmospheric Chemistry and Physics, 18(5), 3299–3319. https://doi.org/10.5194/acp-18-3299-2018

Låg, M., Øvrevik, J., Refsnes, M., & Holme, J. A. (2020). Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respiratory Research, 21(1), 299. https://doi.org/10.1186/s12931-020-01563-1

Marques, C., Fiolet, T., Frenoy, P., Severi, G., & Mancini, F. R. (2022). Association between polycyclic aromatic hydrocarbons (PAH) dietary exposure and mortality risk in the E3N cohort. Science of The Total Environment, 840, 156626. https://doi.org/10.1016/j.scitotenv.2022.156626

Moorthy, B., Chu, C., & Carlin, D. J. (2015). Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicological Sciences, 145(1), 5–15. https://doi.org/10.1093/toxsci/kfv040

Muliase, I. N. (2023). Analisis Patogenesis, Faktor Risiko, dan Pengelolaan Penyakit Paru Obstruktif Kronik: Studi Literatur. Jurnal Sehat Indonesia (JUSINDO), 6(01), 249–255. https://doi.org/10.59141/jsi.v6i01.71

Nim, N., Morris, J., Tekasakul, P., & Dejchanchaiwong, R. (2023). Fine and ultrafine particle emission factors and new diagnostic ratios of PAHs for peat swamp forest fires. Environmental Pollution, 335, 122237. https://doi.org/10.1016/j.envpol.2023.122237

Nwaozuzu, C. C., Partick-Iwuanyanwu, K. C., & Abah, S. O. (2021). Systematic Review of Exposure to Polycyclic Aromatic Hydrocarbons and Obstructive Lung Disease. Journal of Health and Pollution, 11(31), 210903. https://doi.org/10.5696/2156-9614-11.31.210903

Oliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M. C., & Morais, S. (2019). Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environment International, 124, 180–204. https://doi.org/10.1016/j.envint.2018.12.052

Payus, C., Anuar, S. I., Chee, F. P., Rumaling, M. I., & Soegianto, A. (2023). 2019 Southeast Asia Transboundary Haze and its Influence on Particulate Matter Variations: A Case Study in Kota Kinabalu, Sabah. AIMS Environmental Science, 10(4), 547–558. https://doi.org/10.3934/environsci.2023031

Phung, V. L. H., Ueda, K., Yulianti, N., Ohashi, M., Kawasaki, M., Fatmaria, F., Arifin, S., Kahanjak, D. N., Putra S, R. A. A. H. S., Bakring, A., Kusin, K., & Naito, D. (2025). Effects of smoke haze on respiratory clinic visits in Central Kalimantan, Indonesia according to different haze characteristics. International Journal of Epidemiology, 54(6), dyaf169. https://doi.org/10.1093/ije/dyaf169

Poursafa, P., Moosazadeh, M., Abedini, E., Hajizadeh, Y., Mansourian, M., Pourzamani, H., & Amin, M.-M. (2017). A Systematic Review on the Effects of Polycyclic Aromatic Hydrocarbons on Cardiometabolic Impairment. International Journal of Preventive Medicine, 8(1). https://doi.org/10.4103/ijpvm.IJPVM_144_17

Reddington, C. L., Yoshioka, M., Balasubramanian, R., Ridley, D., Toh, Y. Y., Arnold, S. R., & Spracklen, D. V. (2014). Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia. Environmental Research Letters, 9(9), 094006. https://doi.org/10.1088/1748-9326/9/9/094006

Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., & Elliott, C. T. (2016). Critical Review of Health Impacts of Wildfire Smoke Exposure. Environmental Health Perspectives, 124(9), 1334–1343. https://doi.org/10.1289/ehp.1409277

Samburova, V., Connolly, J., Gyawali, M., Yatavelli, R. L. N., Watts, A. C., Chakrabarty, R. K., Zielinska, B., Moosmüller, H., & Khlystov, A. (2016). Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Science of The Total Environment, 568, 391–401. https://doi.org/10.1016/j.scitotenv.2016.06.026

Sengupta, D., Samburova, V., Bhattarai, C., Moosmüller, H., & Khlystov, A. (2023). Emission factors for polycyclic aromatic hydrocarbons from laboratory biomass-burning and their chemical transformations during aging in an oxidation flow reactor. Science of The Total Environment, 870, 161857. https://doi.org/10.1016/j.scitotenv.2023.161857

Stockwell, C. E., Jayarathne, T., Cochrane, M. A., Ryan, K. C., Putra, E. I., Saharjo, B. H., Nurhayati, A. D., Albar, I., Blake, D. R., Simpson, I. J., Stone, E. A., & Yokelson, R. J. (2016). Field measurements of trace gases and aerosols emitted by peat fires inCentral Kalimantan, Indonesia, during the 2015 El Niño. Atmospheric Chemistry and Physics, 16(18), 11711–11732. https://doi.org/10.5194/acp-16-11711-2016

Thangavel, P., Park, D., & Lee, Y.-C. (2022). Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. International Journal of Environmental Research and Public Health, 19(12), 7511. https://doi.org/10.3390/ijerph19127511

Uda, S. K., Hein, L., & Atmoko, D. (2019). Assessing the health impacts of peatland fires: A case study for Central Kalimantan, Indonesia. Environmental Science and Pollution Research, 26(30), 31315–31327. https://doi.org/10.1007/s11356-019-06264-x

Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. Journal of Environmental Science and Health, Part C, 26(4), 339–362. https://doi.org/10.1080/10590500802494538

Vogel, C. F. A., Van Winkle, L. S., Esser, C., & Haarmann-Stemmann, T. (2020). The aryl hydrocarbon receptor as a target of environmental stressors – Implications for pollution mediated stress and inflammatory responses. Redox Biology, 34, 101530. https://doi.org/10.1016/j.redox.2020.101530

Wulan, A. J., & Subagio, S. (2016). Efek Asap Kebakaran Hutan terhadap Gambaran Histologis SaluranPernapasan. Majority, 5(3), 162–167.

Yang, J., Chen, H., Zhao, W., & Zhou, J. (2016). Combustion kinetics and emission characteristics of peat by using TG-FTIR technique. Journal of Thermal Analysis and Calorimetry, 124(1), 519–528. https://doi.org/10.1007/s10973-015-5168-x

Yang, L., Zhang, H., Zhang, X., Xing, W., Wang, Y., Bai, P., Zhang, L., Hayakawa, K., Toriba, A., & Tang, N. (2021). Exposure to Atmospheric Particulate Matter-Bound Polycyclic Aromatic Hydrocarbons and Their Health Effects: A Review. International Journal of Environmental Research and Public Health, 18(4), 2177. https://doi.org/10.3390/ijerph18042177

Yang, W., Wang, G., & Bi, C. (2017). Analysis of Long-Range Transport Effects on PM2.5 during a Short Severe Haze in Beijing, China. Aerosol and Air Quality Research, 17(6), 1610–1622. https://doi.org/10.4209/aaqr.2016.06.0220

Zaccone, C., Rein, G., D’Orazio, V., Hadden, R. M., Belcher, C. M., & Miano, T. M. (2014). Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochimica et Cosmochimica Acta, 137, 134–146. https://doi.org/10.1016/j.gca.2014.04.018

Zanotto, T. M., Gonçalves, A. E. D. S. S., & Saad, M. J. A. (2024). Pulmonary hypertension and insulin resistance: A mechanistic overview. Frontiers in Endocrinology, 14, 1283233. https://doi.org/10.3389/fendo.2023.1283233

Zelinkova, Z., & Wenzl, T. (2015). The Occurrence of 16 EPA PAHs in Food – A Review. Polycyclic Aromatic Compounds, 35(2–4), 248–284. https://doi.org/10.1080/10406638.2014.918550

Zhang, H., Zhang, X., Wang, Y., Bai, P., Hayakawa, K., Zhang, L., & Tang, N. (2022). Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. International Journal of Environmental Research and Public Health, 19(7), 3944. https://doi.org/10.3390/ijerph19073944

Zimmerman, E., Zhang, M. A., Helms, M. N., & Paine, R. (2024). Polycyclic aromatic hydrocarbon (PAH) activation of AhR inhibits glutathione S-transferase (GST) activity in primary human small airway epithelial cells (hSAECs). Physiology, 39(S1), 1897. https://doi.org/10.1152/physiol.2024.39.S1.1897

Downloads

Published

2026-02-09

How to Cite

Wijayanti, N. M., Suhartati, S., & Fadillah, N. (2026). Review: Potensi Dampak Polycyclic Aromatic Hydrocarbons (PAH) dari Asap Kebakaran Hutan Gambut terhadap Penyakit Paru di Kalimantan Tengah. JURNAL BIOSHELL, 15(1), 112–125. https://doi.org/10.56013/bio.v15i1.5427