Hubungan Kadar Mioglobin Otot dengan Kemampuan Menyelam pada Beberapa Jenis Ikan Air Tawar
DOI:
https://doi.org/10.56013/bio.v15i1.5055Keywords:
Mioglobin, Hipoksia, Adaptasi ikanAbstract
Kajian literatur ini bertujuan untuk (1) mendeskripsikan kadar mioglobin pada beberapa spesies ikan air tawar, (2) menjelaskan hubungan antara kadar mioglobin otot dengan kemampuan menyelam atau bertahan pada kondisi hipoksia, serta (3) mengidentifikasi spesies yang memiliki kadar mioglobin tinggi dan ketahanan menyelam paling lama. Hasil analisis literatur menunjukkan adanya perbedaan karakter struktural mioglobin antarspesies, yang memengaruhi kapasitas penyimpanan oksigen. Ikan gabus dan lele memiliki kadar mioglobin tinggi serta struktur mioglobin dengan afinitas oksigen kuat, memungkinkan keduanya menyimpan oksigen lebih banyak di jaringan otot dan bertahan lama saat hipoksia. Sebaliknya, ikan nila, gurame, dan ikan mas memiliki kadar mioglobin rendah–sedang sehingga daya tahan menyelam lebih rendah. Temuan ini memperkuat konsep bahwa mioglobin berperan penting dalam adaptasi fisiologis ikan air tawar terhadap kondisi oksigen rendah, dipengaruhi habitat, kebutuhan metabolik, dan struktur respirasi.
References
Bagus, D., Budi, S., Maulana, R., & Fitriyah, H. (2019). Sistem Deteksi Gejala Hipoksia Berdasarkan Saturasi Oksigen dan Detak Jantung Menggunakan Metode Fuzzy Berbasis Arduino (Vol. 3, Issue 2). http://j-ptiik.ub.ac.id
Bailey, J. R., & Driedzic, W. R. (1986). Function of myoglobin in oxygen consumption by isolated perfused fish hearts. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 251(6), R1144–R1150. https://doi.org/10.1152/ajpregu.1986.251.6.R1144
Brill, R. W., & Bushnell, P. G. (2001). The role of aerobic and anaerobic metabolism in the swimming energetics of fishes. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129(2–3), 283–302.
Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). . SAGE Publications.
De Miranda, M. A., Schlater, A. E., Green, T. L., & Kanatous, S. B. (2012). In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. Journal of Experimental Biology, 215(5), 806–813. https://doi.org/10.1242/jeb.060681
Douglas, E. L., Peterson, K. S., Gysi, J. R., & Chapman, D. J. (1985). Myoglobin in the heart tissue of fishes lacking hemoglobin. Comparative Biochemistry and Physiology Part A: Physiology, 81(4), 885–888. https://doi.org/10.1016/0300-9629(85)90924-7
Evans, D. H. (2005). The Physiology of Fishes (3rd ed.). CRC Press.
Febrianti, I., Puspitaningrum, R., & Rusdi, R. (2017). Identifikasi Fragmen DNA Mioglobin Sepanjang 114 PB pada Beberapa Jenis Hewan Laut Yang Mampu Hidup Pada Zona Minimum Oksigen. BIOMA, 11(2), 194. https://doi.org/10.21009/Bioma11(2).9
Fitrohtul Uyun, H., Indriawati, R., Studi Pendidikan Dokter, P., Kedokteran dan Ilmu Kesehatan, F., Muhammadiyah Yogyakarta, U., & Fisiologi, B. (2013). Pengaruh Lama Hipoksia terhadap Angka Eritrosit dan Kadar Hemoglobin Rattus norvegicus Effect of Hypoxia Duration to the Erythrocyte and Hemoglobin Rattus norvegicus. In Mutiara Medika (Vol. 13, Issue 1).
Hart, C. (2018). Doing a Literature Review: Releasing the Research Imagination. SAGE Publications.
Helbo, S., Dewilde, S., Williams, D. R., Berghmans, H., Berenbrink, M., Cossins, A. R., & Fago, A. (2012). Functional differentiation of myoglobin isoforms in hypoxia-tolerant carp indicates tissue-specific protective roles. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302(6), R693–R701. https://doi.org/10.1152/ajpregu.00501.2011
Helbo, S., & Fago, A. (2012). Functional properties of myoglobins from five whale species with different diving capacities. Journal of Experimental Biology. https://doi.org/10.1242/jeb.073726
Ikhwan, M., Rahmadi, S., & Putra, A. (2020). Muscle myoglobin concentration and habitat oxygen fluctuation in freshwater fish species. Journal of Aquatic Biology, 5(1), 45–52.
Kanatous, S. B., Mammen, P. P. A., Rosenberg, P. B., Martin, C. M., White, M. D., DiMaio, J. M., Huang, G., Muallem, S., & Garry, D. J. (2009). Hypoxia reprograms calcium signaling and regulates myoglobin expression. American Journal of Physiology-Cell Physiology, 296(3), C393–C402. https://doi.org/10.1152/ajpcell.00428.2008
Liem, K. F. (1980). Adaptive significance of intraspecific and interspecific differences in the feeding repertoires of cichlid fishes. American Zoologist, 20(1), 295–314.
Lobato, R. O., Nunes, S. M., Wasielesky, W., Fattorini, D., Regoli, F., Monserrat, J. M., & Ventura-Lima, J. (2013). The role of lipoic acid in the protection against of metallic pollutant effects in the shrimp Litopenaeus vannamei (Crustacea, Decapoda). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(4), 491–497. https://doi.org/10.1016/j.cbpa.2013.03.015
Ma, Q., Luo, Y., Zhong, J., Mchele Limbu, S., Li, L.-Y., Chen, L.-Q., Qiao, F., Zhang, M.-L., Lin, Q., & Du, Z.-Y. (2023). Hypoxia tolerance in fish depends on catabolic preference between lipids and carbohydrates. Zoological Research, 44(5), 954–966. https://doi.org/10.24272/j.issn.2095-8137.2023.098
Mudjihartini, N., Harmelia, D., & Widia AJ, S. (2023). Efek Hipoksia Sistemik Kronik Terhadap Aktivitas Spesifik Enzim Kreatin Kinase Otot Rangka Tikus. Muhammadiyah Journal of Geriatric, 4(1), 1. https://doi.org/10.24853/mujg.4.1.1-9
Peters, E., Van der Linde, S., Vogel, I., Haroon, M., Offringa, C., De Wit, G., Koolwijk, P., Van der Laarse, W., & Jaspers, R. (2017). IGF-1 Attenuates Hypoxia-Induced Atrophy but Inhibits Myoglobin Expression in C2C12 Skeletal Muscle Myotubes. International Journal of Molecular Sciences, 18(9), 1889. https://doi.org/10.3390/ijms18091889
Prosser, C. L., & Brown, F. A. (1981). Comparative Animal Physiology. W. B. Saunders Company.
Puspitaningrum, R., Wanandi, S. I., Soegianto, R. R., Sadikin, M., Williams, D. R., & Cossins, A. R. (2010). Myoglobin Expression in Chelonia mydas Brain, Heart and Liver Tissues. HAYATI Journal of Biosciences, 17(3), 110–114. https://doi.org/10.4308/hjb.17.3.110
Suryanti, S., Dewi, T., & Ramadhan, R. (2018). Comparative analysis of myoglobin levels in freshwater fishes living in hypoxic environments. Indonesian Journal of Fisheries Science, 23(2), 112–120.
Wardaya, W., Mulyawan, W., Jusman, S. W. A., & Sadikin, M. (2023). Oxidative Stress, Hypoxia-Inducible Factor-1α, and Nuclear Factor-Erythroid 2-Related Factor 2 in the Hearts of Rats Exposed to Intermittent Hypobaric Hypoxia. HAYATI Journal of Biosciences, 31(1), 39–47. https://doi.org/10.4308/hjb.31.1.39-47
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Selvia Selvia, Fauziyah Harahap, Melva Silitonga, Syahmi Edi

This work is licensed under a Creative Commons Attribution 4.0 International License.









